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ABSTRACT  
The extremely skewed data in artificial intelligence, machine learning, and data mining cases are often given 

misleading results. It is caused because machine learning algorithms are designated to work best with balanced 

data. However, we often meet with imbalanced data in the real situation. To handling imbalanced data issues, 

the most popular technique is resampling the dataset to modify the number of instances in the majority and 

minority classes into a standard balanced data. Many resampling techniques, oversampling, undersampling, or 

combined both of them, have been proposed and continue until now. Resampling techniques may increase or 

decrease the classifier performance. Comparative research on resampling methods in structured data has been 

widely carried out, but studies that compare resampling methods with unstructured data are very rarely 

conducted. That raises many questions, one of which is whether this method is applied to unstructured data 

such as text that has large dimensions and very diverse characters. To understand how different resampling 

techniques will affect the learning of classifiers for imbalanced data text, we perform an experimental analysis 

using various resampling methods with several classification algorithms to classify articles at the Indonesian 

Scientific Journal Database (ISJD). From this experiment, it is known resampling techniques on imbalanced 

data text generally to improve the classifier performance but they are doesn’t give significant result because 

data text has very diverse and large dimensions. 

 

ABSTRAK 
Dataset yang tidak seimbang jika digunakan pada kecerdasan buatan, machine learning, dan data mining sering 

kali memberikan hasil yang keliru. Hal tersebut dikarenakan algoritma machine learning dirancang untuk 

berkerja secara optimal dengan data yang seimbang. Namun, sering kali kita diharuskan untuk melakukan 

proses analisis data menggunakan dataset yang tidak seimbang. Cara yang paling umum digunakan untuk 

menangani permasalahan ketidakseimbangan data adalah dengan melakukan resampling untuk mengubah 

jumlah data pada kelas mayoritas atau minoritas sehingga membentuk dataset yang seimbang. Beberapa teknik 

resampling telah diajukan, baik oversampling, undersampling, maupun kombinasi dari keduanya. Teknik 

resampling ini memungkinkan untuk meningkatkan atau menurunkan performa dari model klasifikasi. Teknik 

resampling dengan data terstruktur sudah banyak diterapkan pada beberapa penelitian, namun penerapan 

resampling pada data tidak terstruktur belum banyak dilakukan. Hal tersebut menimbulkan pertanyaan apakah 

teknik resampling dapat diterapkan pada tidak terstruktur seperti teks yang memiliki dimensi yang banyak dan 

karakter yang sangat beragam. Pada penelitian ini kami mencoba menerapkan teknik resampling pada dataset 

artikel Indonesian Scientific Journal Database (ISJD) untuk memahami bagaimana pengaruhnya terhadap 

beberapa model klasifikasi. Dari hasil eksperimen diketahui bahwa secara umum teknik resampling ini dapat 

meningkatkan performa dari model klasifikasi, namun tidak memberikan hasil yang signifikan. 
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1. INTRODUCTION  

The problem of imbalanced data has got more and more hot topics in recent years. Imbalance 

data is the condition where the number of instances in one class is significantly lower than the other 

classes. Imbalance data is a challenging problem in artificial intelligence, machine learning, and 

data mining topic. Most machine learning algorithms are designated to work best with balanced 

data that the target classes have similar prior probabilities. However, the real situation is often the 

ratios of prior probabilities between classes are extremely skewed in the high dimensionality and 

extremely sparse.  
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Typically, in the imbalanced dataset problem, it is more difficult to classify members of the 

minority class than members of the majority class. This happens because machine learning 

algorithms do not consider the class distribution, they are usually designed to improve accuracy by 

reducing the error. Many researches have reported data mining with an imbalanced data distribution 

often give misleading result, such as diagnostic of rare diseases, fraud detection, network intrusion 

detection, detection of oil spills from radar images, text classification, marketing, etc. 

The most popular technique for handling imbalanced data is resampling a training dataset in 

order to balance the class distribution before the data used as input to the machine learning process. 

Resampling is a process that modifies the number of instances in the majority and minority classes 

into a standard balanced data. It will be much easier for machine learning to process the balanced 

data.  

There are 3 approaches resampling, under-sampling by reducing some samples from the 

majority class, over-sampling by adding more samples to the minority class, or a combination of 

both under-sampling and over-sampling. Many resampling methods have been proposed, Random 

Over Sampling (ROS), Synthetic Minority Oversampling Technique (SMOTE) (Chawla, 2002), 

Borderline SMOTE (Han, 2005), kMeans SMOTE (Last, 2017), Support Vector Machine SMOTE 

(SVM-SMOTE) (Zhang, 2018), Adaptive Synthetic (ADASYN) (He, 2008), Random Under 

Sampling (RUS), TomekLinks (Tomek, 1976) Edited Nearest Neighbors (ENN) (Wilson, 1972), 

etc. 

Some previous studies have been implemented those resampling method to their cases. Batista, 

Prati, and Monard analyze the behavior of several over-sampling and under-sampling methods to 

deal with the problem of learning from imbalanced in thirteen UCI data sets which each dataset has 

been collapse in 2 classes (positive and negative), they use C4.5 as classifier method (Batista, 

2004). Xie, Hao, Liu, and Lin in 2019 have been proposed the fused case-control screening to 

balancing the p53 mutant dataset before detecting the transcriptional activity (active or inactive) 

(Xie, 2019). Padurariu and Breaban also dealing the imbalanced data text with oversampling 

methods (Padurariu, 2019). Al-Azani and El-Alfy use SMOTE to highly imbalanced data sentiment 

analysis in short Arabic text (Al-Azani, 2017). Suh, Kim, Song, Leegu, Yu, and Mo comparing of 

oversampling methods on imbalanced topic classification of Korean news articles (Suh, 2017). 

Fernandez, del Rio, Chawla, and Herra compared RUS, ROS, and SMOTE using MapReduce with 

two subsets of the Evolutionary Computation for Big Data and Big Learning (ECBDL’14) dataset 

(Fernández, 2017).  

Loyola-González, Martínez-Trinidad, Carrasco-Ochoa, García-Borroto, have studied the use 

of resampling methods combined with contrast pattern based classifiers for data mining and 

classification tasks on imbalanced databases (Loyola-González, 2016). Krawczyk analyzed 

different aspects of imbalanced learning s uch as classification, clustering, regression, data mining 

and big data analytics (Krawczyk, 2016). Blagus and Lusa use SMOTE to balancing three breast 

cancer gene expression data sets and classify each of them with kNN (Blagus, 2013). Li, Sun, and 

Zhu study on data imbalance problem in text classification on several form such as text distribution, 

class size, and overlapping class (Li, 2010). Yanminsun, Wong, and Kamel provides a review of 

the classification of imbalanced data regarding: the appli- cation domains; the nature of the 

problem; the learning difficulties with standard clas- sifier learning algorithms; the learning 

objectives and evaluation measures; the reported research solutions; and the class imbalance 

problem in the presence of multiple classes (Yanminsum, 2011). 

In this research, we investigated the impact from 5 oversampling techniques are ROS, 

SMOTE, Borderline SMOTE, KMeans SMOTE, SVM-SMOTE, and ADASYN, 3 undersampling 

methods are RUS, Tomek, and ENN, However, oversampling and undersampling method has some 

flaws. Oversampling can lead to model overfitting, since it will duplicate instances from minority 
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class, while undersampling can end up leaving out important instances that provide important 

differences in the majority class. We also tried combined oversampling and undersampling methods 

are SMOTEENN and SMOTETomek, to Gaussian Naïve Bayes, Multinomial Naïve Bayes, SVM 

with linear kernel, SVM with RBF kernel and k-NN for handle highly imbalanced data text in 

Indonesian scientific articles categorization. 

 

2. LITERATURE REVIEW 

In this section, we briefly describe the basic idea to understand how each resampling methods 

works to balancing the imbalanced data. Illustration before and after resampling data can be seen 

in Figure 1. 

 

 
Figure 1. Illustration before and after resampling 

 

 Random Over Sampling (ROS). ROS is simply duplicating the data samples in minority classes and 

adding them to the training datasets. ROS increases the size of the training data set through repetition 

of the original samples until the class distribution is balance. 

 Synthetic Minority Oversampling Technique (SMOTE). SMOTE was introduced by Chawla in 2002. 

Similar to ROS, SMOTE is also increase the size of the training dataset and its variety by generating 

artificial samples in the training dataset by interpolating between existing data points of the minority 

class that are closer to each other. SMOTE algorithm is described in (Chawla, 2002).  

 Borderline SMOTE. Borderline SMOTE is variant of the original SMOTE, proposed by Han, Wen-

Yuan, and Bing-Huan in 2005. Borderline-SMOTE generate their synthetic samples along the 

borderline of minority and majority classes. Figure 3 illustrates before and after resampling with 

Borderline SMOTE, before resampling class 0 have 100 data but class 1 only have 10 data, after 

resampling both class 0 and class 1 have 100 data.  

 KMeans SMOTE. Felix Last, Georgius Douzas, Fernando Bacao tried to apply KMeans to SMOTE in 

their research (Last, 2017). KMeans SMOTE generating minority class samples in safe and crucial areas 

of the input space. 

 SVM-SMOTE. This algorithm is a variant of SMOTE which use SVM to locate the decision boundary 

defined by the support vectors and examples in the minority class that close to the support vectors 

become the focus for generating synthetic examples (Zhang, 2018).  

 Adaptive Synthetic (ADASYN). ADASYN proposed by Haibo He, Yang Bai, Edwardo A. Garcia, and 

Shutao Li in 2008. The essential idea of ADASYN reducing the bias and adaptively learning to generate 

some synthetic data samples for the minority classes based on dynamic adjustment of weights and an 

adaptive learning procedure according to data distributions. Algorithm ADAYSN is described in (He, 

2008).  

Original After Oversampling

After Undersampling After Combined (Ovesampling + Undersampling) 
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 Random Under Sampling (RUS). RUS does the opposite from ROS, it removes some samples from the 

majority class to balanced it with minority class. 

 Tomek Links. Tomek (1976) proposed an algorithm for resampling dataset, named Tomek Links. This 

algorithm detects pairs of instances from the nearest opposite classes to determine borderline between 

majority and minority classes. 

 Edited Nearest Neighbors  (ENN). This method proposed by Zhang in 2008 which uses the edited 

nearest neighbor algorithm to select some samples to be removed  to balanced it with minority class. 

 SMOTEENN. SMOTEENN is a combined method between oversampling method using SMOTE and 

undersampling using ENN. 

 SMOTETomek. SMOTETomek is a combined method between oversampling method using SMOTE 

and undersampling using Tomek.  

 

3.  METHOD  

Figure 2 illustrates 3 important stages in this research, are text processing, resampling and 

categorization, and evaluation. 

 
Figure 2. Methodology 

 

a) Text Processing. In this stage, we have 2 tasks, which are text pre-processing and feature 

weighting.  

 

Text Pre-Processing 

The raw textual data is mostly unstructured. So, before carrying out the categorization process, 

it is necessary to processing the abstract to make it in a structured form and can enhance the 

classifier’s performance significantly (Haddi, 2013). There are a few steps to take in the text 

pre-processing phase, are: 

 Case folding: the entire text in the abstract will be converted to lowercase letters. 

 Stopwords removal: the process to remove stopwords so that only words that are 

considered important will be used. Words such as conjunctions will be removed. 

 Stemming: change a word to the basic word form that builds it. In Indonesian texts all the 

words added both suffixes and prefixes are also omitted 
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Feature Extraction 

When dealing with text, we should represent each document to a vector of word frequencies. 

At this stage we are using Term Frequency - Inverse Document Frequency (TF-IDF) with 

unigram and bigram. We also use Chi-Square for feature selection to select the important 

features in each class.  

 

b) Resampling and Categorization 

In this research, we use 3 approaches in the resampling, are oversampling, undersampling, and 

combined. 

 Oversampling: ROS, SMOTE, Borderline SMOTE, KMeans SMOTE, SVM SMOTE, and 

ADASYN. 

 Undersampling: RUS, TomekLinks, and ENN. 

 Combined: SMOTEENN and SMOTETomek. 

Resampling result from each method will be used to generated classification model. For 

classification machines, we use SVM with Linear and RBF Kernel, Naïve Bayes both Gaussian 

and Multinomial, K-NN.  

 

c) Evaluation 

We use precision, recall, and f-1 measure. 

 Precision  

 Recall 

 F1 Score 

 

4. RESULTS AND DISCUSSIONS  

Data in this research retrieved from the Indonesian Scientific Journal Database (ISJD) from 

2013 until 2019. ISJD is a database containing journals published by journal publishers in 

Indonesia. We retrieve abstract in Indonesian language and label category from each article. After 

cleansing the data, we have 26708 data. The data is not well balanced as the distribution of the 

dataset can be seen in Figure 3. 

 

 
Figure 3. Data distribution 

 

In this research, we investigated the over-sampling and under-sampling techniques to imbalance 

data text. However, oversampling and undersampling method has some flaws. Oversampling can 
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lead to model overfitting, since it will duplicate instances from minority class, while undersampling 

can end up leaving out important instances that provide important differences in the majority class. 

So, we also tried combined oversampling and undersampling method to see how this combined 

method affect the classifier performance. 

 

a) Oversampling 

The precision, recall, and f-measure can be seen in Figure 4, we can see the highest F-Measure 

from oversampling techniques result is SMOTE with SVM-Linear classifier. It is known some 

oversampling techniques can improve classifier performance, ROS, SMOTE, SVM SMOTE, 

Borderline SMOTE, KMeans SMOTE outperformed the original model, only ADASYN has 

decreased the classifier performance. In general, using SMOTE technique will improve the 

result compare to using ROS technique. SMOTE technique and other modifications and 

extension not only increase the size of the minority class but on the other hand, it also increases 

the variety of your data. Variation in the training data set, help machine to not learning too 

much specific from only a few examples. However, sometimes we need to careful with the 

result, whether the variation of the data that has been generated by SMOTE is valid. From all 

classification methods we used, MNB is the most affected from these oversampling 

techniques, MNB F-Measure increase by 0.19 to 0.21. Interesting things here are that the 

oversampling method techniques give a negative impact on kNN, especially with SMOTE, 

SVM SMOTE, Borderline SMOTE, KMeans SMOTE. It happens because SMOTE generates 

their synthetic samples by interpolating between existing data points of the minority class that 

are closer to each other. It is very possible that the data generated is so close to other classes, 

so that it is difficult for KNN to classify new data from resampling results. 

 

 
Figure 4. Precision, recall, and F-Measure oversampling techniques result 
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b) Undersampling 

The precision, recall, and f-measure can be seen in figure 5. We can see the highest F-

Measure from undersampling techniques result is TomekLinks with SVM-Linear 

classifier. In contrast to oversampling, undersampling techniques mostly decrease the 

classifier performance, except for RUS in SVM-RBF and MNB, and TomekLinks in 

SVM-RBF which undersampling techniques can increase the classifier performance 

by 0.01 to 0.09.  The most affected classifier is SVM-Linear. This technique has the 

advantage in terms of times and memory complexity compare to oversampling 

because we are decreasing the size of the data. While in the process we may remove 

some potential data that could be important for the learning process. Another 

undersampling technique we use in this research has overcome the problem by 

removing data that has been identified as redundant or get a high score in similarity.  

 

 
Figure 5. Precision, recall, and F-Measure undersampling techniques result 

 

c) Combined 

In this section, we combined the two techniques described before. it is typically the 

better approach in the resampling method compare to used only oversampling or 

undersampling individually. First, we could remove some redundant data in the 

majority class so it will decrease the size with the hope to improve the times and 

memory complexity, in the other hand for the minority class we increase the data using 

appropriate oversampling techniques until all the classes in data set is balance. The 

precision, recall, and f-measure can be seen in figure 6. We can see the highest F-

Measure from the combined methods between oversampling and undersampling 

techniques result is SMOTENN with SVM-Linear classifer. The combination 

resampling method increases the classifier performance by 0.01 to 0.21, except for 

kNN decrease the classifer by 0.18 to 0.23. Same as the oversampling method, the 

most affected classifier is MNB. 
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Figure 6. Precision, recall, and F-Measure combined techniques result 

 

Results and discussion should be arranged in separate sub-headings. The subtitles in the 

literature review are written with Times New Roman font 11.5, and the contents are Times New 

Roman font 11 (1.15 spaces). The results are not raw data, but data that have been processed 

and interpreted in the form of statistical data, either in the form of tables, graphs, charts, 

sketches, and photographs combined with relevant theories. While the discussion is the result 

of data analysis based on relevant theory. The content of the results and the discussion should 

address the research issues and find the appropriate analysis for the solution/positive impact on 

the development of science and technology in society. 

 

5. CONCLUSION  

Resampling is a simple way to handle imbalanced data, either by oversampling or 

undersampling. Resampling allows us to create a balanced dataset to simplify the classification 

process. However, resampling has some flaws. Oversampling can lead to model overfitting, since 

it will duplicate instances from minority class, while undersampling can end up leaving out 

important instances that provide important differences in the majority class. Ultimately, there is no 

one-size-fits-all method for the imbalanced problems, we just have to try out each method and see 

their effect on specific use cases and metrics. From this experiment, it is known resampling 

techniques on imbalanced data text generally improve the classifier performance. The best 

oversampling method is SMOTE, the best undersampling method is TomekLinks, and the best 

combined resampling method is SMOTETomek. Interesting things here is that the oversampling 

method techniques give negative impact on kNN, especially with SMOTE, SVM SMOTE, 

Borderline SMOTE, KMeans SMOTE. It’s happens because SMOTE generate their synthetic 

samples by interpolating between existing data points of the minority class that are closer to each 

other. It is very possible that the data generated is so close to other classes, so that it is difficult for 

KNN to classify new data from resampling results. 

. 
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